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Abstract

The impact of media awareness can reduce the number of tuberculosis-infected individuals to
a limited extent. This paper presents a non-integer mathematical model of tuberculosis disease
using the Caputo operator. The primary objective of this study is to investigate the impact of
media awareness on tuberculosis-infected migrants and seasonal farm workers. The qualitative
analysis of the existence and uniqueness of the solutions, basic reproduction number Ry, disease
free equilibrium point, sensitivity analysis, and the Hyers-Ulam stability of the model are also
examined. We provide numerical simulations to illustrate the model’s behavior for various frac-
tional orders. In our findings, Ro = 0.5473 demonstrates that when more infected migrants and
seasonal farm workers seek preventative treatment and awareness about tuberculosis disease,
the infection rate will rapidly decline in the respective region.
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1 Introduction

The microorganisms that are harmful, like viruses, bacteria, fungi, and parasites, cause infec-
tious diseases. These infections can be disseminated directly or indirectly between individuals or
by other vectors such as insects or contaminated food and water. Infectious diseases have impacted
human communities historically, ranging from minor outbreaks to worldwide pandemics [34, 14].
Mycobacterium tuberculosis (mTB) is the pathogen that causes tuberculosis (TB), also known as
pulmonary tuberculosis, and usually affects the lungs. But occasionally, it can also have an impact
on the kidneys, spinal cord, skeleton, etc. When a person with active TB coughs, sneezes, or spits,
the disease can spread through the air [32]. Archaeological evidence from ancient Egypt, India,
and China has revealed the existence of this ancient disease [27].

The mathematical model demonstrates a prominent application to study the development or
decomposition of TB bacteria and how to control TB by adjusting biological parameters [7, 10].
The main purpose of mathematical modelling on infectious disease transmission is to provide
insightful and pertinent perspectives for public health initiatives meant to stop or even slow the
disease spread. Many aspects of TB’s natural history and transmission dynamics, however, are
still unclear because the disease is contagious and has a complicated mode of transmission. A
tremendous deal of research has been done on the mathematical modelling and analysis of TB
[37]. Numerous researchers have conducted substantial research on TB’s mathematical modelling
and analysis. To analyze the TB epidemiological pattern, Waaler et al. [35] developed the first
mathematical model. Das et al. [13] analyzed a TB model incorporating the influence of media
on transmission rate. It is important to consider various aspects of TB while modelling the disease
mathematically. These include vaccination [29], therapy and incomplete treatment [26], quick
and slow progression [9], reinfection [11], and drug-resistant strains [36].

Recently, the application of fractional-order derivatives in mathematical modelling has become
somewhat well-known in many disciplines, including epidemiology [23] and control theory [17].
Fractional-order derivatives exhibit some key physical properties, such as memory effects, non-
locality, and flexibility. These properties make fractional derivatives valuable in various fields,
including control theory, bioengineering, and complex systems modelling [22]. The memory ef-
fect, a crucial component of biological models, is one of the primary characteristics [4]. Many
researchers studied the fractional order TB models to study the existence and uniqueness criteria
[19], dynamics in two age groups [16], insufficient treatment [5], and Hyers-Ulam (HU) stability
[24]. Al-Mdallal et al. [2] studied a fractional order coronavirus model via the modified Euler
method (MEM). Furthermore, he used the Runge-Kutta fourth order (RK4) method step by step
to investigate the coronavirus transmission dynamics [3].

Furthermore, advancements in TB control necessitate a comprehensive understanding of its
cause, transmission dynamics, preventative strategies, treatment modalities, and a positive dispo-
sition. Addressing knowledge deficiencies in TB prevention is crucial for eradicating the disease
[15]. Numerous researchers discussed some factors of disease knowledge and attitude, i.e., liter-
acy [1], media [31], professional occupation [21], education about health [6], and cultural myths
[18]. Since knowledge is fundamental to a TB control strategy, assessing the awareness of mi-
grants and seasonal farm workers is essential for the effective and expedited implementation of
TB control measures [20]. Despite considerable advancements in TB management and mitigation
in the particular region, evidence is inadequate on the present knowledge, attitudes, and associ-
ated variables regarding TB among seasonal farm workers and migrants in the relevant region.
As a result, assessing their knowledge and attitude is critical in taking action to reach the end
TB strategy goal. This research aims to analyze the extensive details of the media impact on mi-
grants and seasonal farm workers via the fractional order Caputo derivative operator with the
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MEM method. Additionally, we use the RK4 method to compare and check the validity of the
results. Furthermore, as preventive treatment is a voluntary tool for disease control, the media
will have an effect on the rate of treatment adoption. The media can encourage various migrants
and seasonal farm workers, particularly those who have low knowledge about TB disease, to seek
preventative therapy by highlighting the advantages and necessity of doing so for those who are
infected with it.

We structure this manuscript in the following way: In Section 2, we construct a novel fractional-
order epidemic model that considers the impact of media awareness on TB-infected migrants and
seasonal farm workers. Section 3 delineates the essential definitions of the Caputo operator. In
addition, Section 4 examines the existence of the proposed model unique solution. Next, we com-
pute the disease-free equilibrium point (DFEP) Eg, basic reproduction number Ry, and sensi-
tivity analysis in Section 5. Section 6 highlights HU stability. In Section 7, we employ the MEM
approach to derive an approximate solution for the proposed model. Furthermore, we examine
the influence of characteristics associated with preventative treatment on TB control and validate
the results using the RK4 approach. Ultimately, Section 8 delineates the conclusion.

2 Model Formulation

In this paper, we presented fractional differential equations under the Caputo derivative to
examined the TB disease dynamics by dividing the population into six categories according to
the population’s epidemiological status: S({) susceptible population, E(¢) exposed population,
I(¢) infected population, Iy () migrants and seasonal farm workers infected population, T'(¢)
treatment population, and R(¢) recovered population. The overall population is denoted by N (¢).

CDIS(C) = A — BS(I+60T) +yR — S,

“DJE(C) = BS(I +6T) — (amT

T +w+ u> E,
CDIIC) = wE — (5 +dy + p)1,

(M

“DiIw (¢) = a— B @+,
CDYT(C) = 61 + ¢pIw — (r1 +da + p)T,
“DJR(() = T + rolw — (v + p)R.

Figure 1 illustrates the schematic diagram of the above Model (1). The terms leaving the compart-
ment are indicated by the outward arrow, while the terms entering the compartment are indicated
by the inward arrow.

The following presumptions are used in the TB model: Let 3 represent the transmission rate
and A indicate the recruitment in the susceptible population by migration and birth. The ex-
pression ¢ represents the reduction rate of TB transmission attributable to therapy, 8 € (0,1), v
signifies the recovery rate, which regains susceptibility after losing immunity, and p represents
natural death. The impact rate influenced by media is denoted by «, whereas m signifies the
half-saturation constant. The expression w is the ratio at which the exposed individuals become
infected, and ¢ is the transmission ratio of infected workers from Iy into T'. d; and d» represent
the induced disease mortality ratio in I and T respectively. The parameter J represents the trans-
mission ratio of infected individuals to the 7', and r; and 7, are the recovery rates in 7" and Iyy,
respectively.
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Figure 1: Schematic diagram of Model (1).

Note that all parameters are positive except v > 0 and o > 0. In this case, v = 0 denotes
permanent immunity for recovered individuals, whereas a = 0 denotes no media impact. Let
ki=w+p ke =0+di+u, ks =¢+ro+u ks =r1+da+p, ks = v+ pu. Model (1) can be written
as,

CDIS(C) = A—BS(I+60T) + R — S,

CDIE(C) = BS(I +0T) — amf_
CDIIC) = wE — koI,

E—kFE
T 14,

(2)
“Dilw(¢) =a

E — k3l
m+T 34W,

CDIT(C) = 61 + pIy — kaT,
CDIR(C) =T + rolw — ks R,

subjected to the initial conditions,
(S,E,I,Iw,T,R) > 0.

In the above model, the fractional order derivatives denoted by CDg , where 0 < 1 < 1 are the
Caputo derivatives associated with biological parameters.

3 Caputo Operator Basic Definitions

Definition 3.1. [30] For any function f (), the Caputo derivative of order ) is defined as follows,

¢
CDIFC) = - /O (¢ — 5ym 11 f) (5)ds 3)

I'(n—
where n = [n] + 1, the Laplace transformation is defined as,

n—1

L{ODYF(Q)} = s"F(s) — Y _ st fM)(0). (4)

k=0
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Definition 3.2. [33] The Mittag-Leffler function of two parameters in series is defined as,

E = Ear A NZEAR7 eC. 5
The Laplace transformation is defined as,

s

sTF M’

L {qulEn,q(iMcn)} = (6>

4 Existence & Uniqueness of Solution

We demonstrate the existence and uniqueness of Model (2) via fixed point theory. Let Q(()
and Q(0) be two vectors, which have state variables with initial values, and a vector function
Y :[0,T] x R® — Ris continuous, i.e.,

Q(¢) = (S,B.I,Iw,T,R)",
9(0) = (So, Eo, Iy, Iw g, To, Ro)T, (7)
V(G Q) =B), i=1,....6,

where

By = A —BS(I+0T)+~R — S,

T
By =pS(I+060T)— E—-kFE
2 B ( + ) am—|—T 14,
B3=WE—]€2L
T
By = E — ksl
4 am+T 34W,

Bs = 61 + ¢l — kaT,
Bﬁ :T1T+’I‘QIW 7]€5R

Equation (7) can be expressed as,

{CDS’Q(C) — Y(6,Q(0)): -
Q(0) = Qo >0,
where 0 < (<T < o0, 0<n<1.
Integrating both sides of (8) gives,
1 9
20~ Q0) = 75 | (€= V(. Qi ©)
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For each class of the proposed model, we can write (9) as,

S(C) - 5(0) = ﬁ JEC =) 1By (v, S0,

B(Q) - E(0) = ﬁ JEC = 0™ Bal EQO)ldx.
1(¢) — 1(0) = ﬁ JEC =" [Bs (e 00,

L (10)
Iy (¢) — Iw(0) = ) Jo (¢ = x)" 1 [Ba(x, Iw (x)))dx,
()~ T(0) = ﬁ S = 0" Bs (6 TR0 dx

1
I'(n)

Theorem 4.1. All kernels B; fulfill the Lipschitz condition and they are contraction if,

R(C) = R(0) = —— [*(¢ = x)" " [Bs(x, R(x))]dx-

0<Q;<1, i=1,...,6.

Proof. Let S and S; be two functions, then,

1B1(¢, S(¢)) = Ba (G, S1(O) = [[(B(L + 6T)(S(C) = 51(€)) — u(S(S) = Sa ()]l

Taking Q1 = |8(g1 + 0g2) — ul, [ IOl < g1, |T(C)]] < g2, by triangular inequality, we have

[1B1(¢, S(C)) — Bi(¢, S1(O) < [{B(g1 + 0g2) — u}{S(C) — S1(O)}HI
< [B(g1 + 0g2) — pll|S(C) — S1(Q)]]
< Q15(¢) = S1(Q)]l-

Therefore, the Lipschitz requirement is satisfied for B; and if 0 < @1 < 1, it likewise qualifies as a
contraction. Similarly, we have

1B2(¢, E(C)) — Ba2(¢, E1(O)]l < Q2[|E(C) — Er(Q)],
1B5(¢, 1(¢)) = B3 (¢, L () < Qs]I1(¢) = L1 ()],

1B4(¢ Iw (€)) — Ba(C, Iw 1 ()] < Qullw (€) — Iw 1 (O,
1B5(¢, T(C)) — B5 (¢, Th () < @s[1T(C) — Ta (),
1B6(¢, R(¢)) — Bs (¢, R1(O)Il < QallR(¢) — Ra(Q)],

where Q2 = k1, Q3 = k2, Q14 = k3, Q5 = ka, Qs = ks.

Hence all B; meet the Lipschitz requirements, and are contractions if Q; € [0,1),¢i=2,...,6. O
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From (10), the recursive formulas for S, E, I, Iy, T, R are

5.0 = 7 fo ¢ 1[Bl<x Sui(x ))]dx,
En©) = s (6 =207 [Bab a0
I(¢) = F(ln Nk 1{33()( I—1(x ))}dx,

Iy, (t) = Ff fo (P |:B4(X7[Wn—1(X)):| dx

Tn(C):ﬁf (C X)n 1|:B5 Xa n— 1 :|dX7
Ra(6) = 1 IS (€ =00 1[B6<x Rui(x ))]

with initial conditions,

So(¢) = 5(0), Eo(¢) = =
Two(¢) = Iw(0),  To(¢) =T(0), ( )ZR( )

Now, taking the differences (¥, () where 7 = 1,...,6) between the successive terms yields,

52(0) = Su-1(0) = s (€ =07 [Bl (. Sur(0)) - Bulx. sn2<x>>] dx,

En(¢) = En-1(C) = ﬁ Jo (€= [Bz(xa En-1(x)) = Ba(x; En—ﬂX))} dx;

1(€) = Tna(0) = ﬁ f§<< — [Bgu, Lo () — Balx. In2<x>>] dx.

(11)
al©) = T (0) = s 516 =007 [Baxs T () = Bt Evn2(0)
() = Toa®) = fo ¢ =207 [Bal Taca(00) = Bal Toa 00,
€)= Rua(6) = 1 J516 = 307 Bl Ruca(0)) = B Rucal)

It is clear that

SO = D W@, BalQ) = £ (O 1(0) = 3 ¥i(0)

Utilizing the norm concept to (11), we get

s = 12(6) = $ua O =[5 [ 6 =07 B 80m2000 = Bt Sa-2t0)] |-
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By using triangular inequality, we have

150(0) = Sur ()] = Hr(ln) / S 51005010) = Ba(x.S-200) | |

1 [ _
< 5 [ e =0 B0 - Bt sst o
I'(n) Jo
Given that the kernel satisfies the Lipschitz condition, then,
(@ < 1 [ 00l (12)
Similarly, we obtain
[Win (Ol < 'L(n 1) X) |ldx, Vi=2,...,6. (13)

Theorem 4.2. For a finite time o, if

C(]

22 0,<1, Vi=1,...,6,
I'(n)

then, Model (2) solution exists.

Proof. By using (12) and (13), and recursive principle [25], we obtain

IAGTHECTIER

Q2
F(n)} ’

n

Wan Q)] < ||E<o>|[

)

n} ’
3]
n)] ’

Hence, the Model (2) has at least one solution. Now, we will demonstrate that the aforementioned
functions yield the solution for Model (2). Let,

W (Ol < [L(0)]] {ch;

| I

[Wan (O < [[ 2w (0)]]

l_|

125, (O < [70) [

1260l < IRO)] [F(

S5(¢) = 5(0) = Sn(C) = Bin(0),
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thus, by the triangular inequality, we have

IOl = | 55 S 5100500) = Bu(x.$,0100) ||

1 ¢ 1

< 5 [ €207 1B 5000 Batws s (00
¢

< lellS — Spall-

Using the recursive principle, gives,

M)l < (Ffm@l)”ﬂa.

At (o, we have
§O n+1
< | == .

M@l < (fh@) o

Thus,
i (Q)] =0, as n— oo, if C(O)Ql <L
Similar,
I ()| =0, as n—o0, i=2,...,6.
Hence proved. O
Theorem 4.3. If {1 - F(C)Ql} >0, Vi=1,...,6,then, the aforementioned Model (2) has a unique
n

solution.

Proof. Let S and S; be two functions, and to show the uniqueness of the solution of Model (2),
then, we have

1 ¢
S(0) = 510 = g5 | €0 [Bxx, S(0) - Bu(x, sl<x>>} dx, (15)

it is obvious that,
[15(¢) = S1(Q)[l > 0.
Utilizing the norm concept (15), we get
1 [ .
1566) = SO < s [ (€207 1810 S00) = B Syl an

By Lipschitz condition, we obtain

15(0) = S1(O)] < fmczl[nsu smo}

(1- 55 [Is@ - si01] <0
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Since,

¢
1:6;5C21 <1,

we have

15(¢) = SO =0,

which gives,

S(¢) = 51(0)-
Similarly,
EQ) =Ei(Q), Q) =1(), Iw(Q)=1Iwi(C), T)=Ti(¢), R(¢)=Rui(]).
Hence, the Model (2) has an unique solution. O

5 Fundamental Characteristics

The foundational properties of the solutions of the given Model (2), such as positivity, bound-
edness, and invariant region, are presented in this section.

5.1 Invariant region

Let @ = {(S, B, 1, Iw,T, R) € R} }, N(C) = S(¢) + E(C) + I(C) + Iw (¢) + T(C) + R(C) feasible
region, and all functions of Model (2) are continuous on R}. Adding all classes of population,
then, the net population becomes,

“DIN) =“DJS +C°DJE+“DJI +“DlIw + “DIT + ° DR,
which gives,
“DYN(¢) = A = uN(Q). (16)
Applying the Laplace transformation to (16), we have
L{°DGN(Q)} = AL{1} = pL{N()}.
FLIN(QY 7N (O0) = &~ pLIN ().
(7 + WLIN(Q} = 57 N(O) + =

Hence,

st sl

LN} = A+ o, VO,

Using Definition 3.2 and inverse Laplace transformation on both sides, we have
N(C) = AC"Ey i1 (=€) + N(0) By 1 (—pc"),

A
N(¢) = MEC”En,nH(—uC") + N(0)Ep 1 (—p").
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A
Let M = max {N(O), ; }, then, we have

N <M {chEnm-&-l(—ﬂCn) + En,l(—ﬂcn)} .

By using En,q(o = CEnJHq(C) + Fiq' we get
N(C) < M{=pC"Eyy 41 (—C™) + ﬁ + HCT By i ()}
N(¢) < M.

Hence, N(() is bounded uniformly and given Model (2) all solutions are uniformly bounded in
Q. Thus, the region (2 is positively invariant.

5.2 Positivity and boundedness

In order to demonstrate that every solution of the suggested Model (2) is positive, we assess
the Model (2) first equation as,
“DIS(C) =A—BSI+0T) +~yR — uS
—(B(I+0T)+ p)S (17)
—pS.

v v

Using Lemma 9 from [12] and E,, ;(¢) > 0, for any € (0, 1], (17) becomes
S(Q) = S(0)Eya(=p¢") = S(¢) = 0.
Similarly, other equations of the Model (2) are positive. Therefore,
Q={(S,E,I,Iw,T,R) € R} | (S+ E+1I+1Iw+T+R) >0}

Therefore, the Model (2) solutions are both positive and bounded to the feasible region (2.

5.3 Fundamental properties

In the section, we provides DFEP, basic reproduction number, and sensitivity analysis.

53.1 DFEP (Eo)

To study the DFEP of the Model (2), let,
“DIS =C°DIE =°DJI =°Di{Iw =°“DJT = “DJR = 0.
Now, considering Eq is DFEP such that,
Eo(S,E,I,Iw,T,R) = (So, Eo, I, Iw, To, Ro)-

By simplification and calculation, we obtain

A
Eo = (,0,0,0,0,0).
L
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5.3.2 Basic reproduction number (Ro)

The Basic reproduction number R of the model described in (2) is ascertained using the next-
generation matrix method [39].

To calculate Rg, we analyze the simplified system X = (E,I, Iy, T)T and deduce the neces-
sary matrices F and V. The Jacobian matrices evaluated at Eq are as follows,

BA BAG
0 — 0 — k0 0 0
F(Eq) = x K Vg — | @ R 00
N N R
0 -6 —¢ k
0 0 0 0 ¢ ka
and
BAw(ks +00) BA(ky+060) BAOG BAI
kikokap kokap kskap — kap
Fy = 0 0 0 0
0 0 0 0
0 0 0 0

The Ry is the spectral radius p of FV~!. After simplification of V!, we have

B BAw(ky + 0¢
Ry = p(7V) = St 20

5.4 Sensitivity analysis

We want to see how Ry is sensitive or responsive to small changes in the different factors or
parameters that fit into the disease model. To do this, we compute the sensitivity index for each
parameter. The sensitivity index tells us how much Rg changes will shift if we tweak that specific
parameter a little bit, while keeping all the other parameters the same. We employ an approach
similar to that utilized by Nawaz et al. [28] to figure out the normalized forward sensitivity in-
dex of Ry for a specific parameter. The sensitivity index Ro concerning the model parameters is
derived by,

BA(P0 + kyg)(1 — w) R BAw(ky + 09) BAOwe
ThH = ThH = L TH = —
w oA > 0, 5 T A <0, n T <0,
Ry _ Bw(ka +00) Ry _ Aw(ks +09) Ry _ BAwo R, _ BABS
TR = L >0, Th==EEI oo 1= =0, TR =R s,
R _ _ | BAw[ka(kop + K (p + ko)) + $0(Raps(ks + ko) + kaka(p + k)] _
7 )

A2
where A = k1kokyp.
It is readily apparent that the parameters A, 6, ¢, w, and /5 are associated with positive indices.

This implies that the value of the basic threshold ratio will drop when these parameters rise. On
the other hand, indices of the parameters y, J, p and r; show negative indications. This implies
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that a change in these values will raise Rg. Figure 2 displays the partial rank correlation coefficient
results for the significance of parameters included in Ry.

Senstivity Index

15 1 1 1 1 1 ! 1 1

Parameters

Figure 2: Sensitivity indices.

Figure 3 displays the ratio influence of infected individuals seeking medication, with media
influenced « is positive. Attributed to the media, the graph reveals a notable rise in knowledge
among seasonal farm workers and infected immigrants. This implies that media awareness can
help to control TB. Which means that the disease can be controlled with media awareness.
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Figure 3: Analysis of media impact parameter o on infected workers Iy ().
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6 HU Stability

This section addresses the HU stability of Model (2) and establishes the necessary inequalities.
We define the required inequalities,

“DJOI0) - V(6. Q)| < ce (1)

where € = max(¢;)T,i=1,...,6.

Definition 6.1. TB Model (2) is HU stable, if there are constants G; > 0, i € N, such that for every
€ > 0and a solution Q satisfying (18), there is a unique solution Q with,

’Q(g)—g(g)‘ <Gie, i=1,...,6. (19)

Remark 6.1. Consider O is the solution of inequality (18), and if there are h;, i = 1,...,6, such that
|hi(Q)] < €, we have

Theorem 6.1. Let,
o .
1 =1,...,6
1—\(77) < ) Z ) ) )

holds. Then, the proposed TB Model (2) is Hyers-Ulam stable.

Proof. From Remark 6.1, we have

“DJOO) = V(¢ Q) + hil©),
which gives,

. . ¢ . ¢
3(¢) = O(0) + ﬁ /0 (¢ — 9)" Yy, Oy))dy + ﬁ /0 (¢ — 9" hu(y)dy.

Let Q(¢) be a unique solution of the proposed model, then,
1 z
Qz:QO—F—/ 2 —y)"ty ,Q dy.
(2) = Q(0) ) | (zm0)" YVl Qy))dy

Hence,

Jo-df < 5 [ o

1 [ -1
+@/0 (C—v)

5 ¢
Q_Q"+Im€1

V(y, Qy)) — V(y, Q(y>)de

hi(y)de

- a1

L'(n)

A
[ —
=
) 7
=
[ —

19 -9l <
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Then,

1Q - Qll < Gie,

ol
where G; = L,i =1,...,6. Hence, Model (2) is HU stable. O

o

7 Numerical Simulation

This section addresses a numerical simulation utilizing the Caputo fractional operator to demon-
strate the dynamic behavior of the proposed TB model. The mathematical scheme of the MEM
is utilized to obtain an approximate solution of the problem under consideration. The proposed
model can be written as,

T
°DIE(() = B2(S,E, I, Iw,T,R) = BS(I + 0T) — a—— TE — kW E,

“DYI(C) = B3(S, B, I, Iw,T,R) = wE — ko,

CDgfw(C)284(S,E,I,Iw,T,R) = E—k’3]w,

m+T
CDIT(C) = Bs(S, B, I, Iw, T, R) = 61 + Iy — k4T,

CDIR(C) = Bs(S, E, I, Iw, T, R) = T + roIw — ksR.

Let [0, T] be the interval of the solution for (21). We divide [0, T'] into m sub-intervals ¢ € [(;, (j+1]
with equal width A = r by using the nodes ¢; = jh for j = 0,1,...,m. Consider S(¢), E((),
m

I(C)/ IW(C)/ T(C)/ R(C)' CDgS(C)/ CDgE(C)r CD(T)]I(C)I CDgIW(C)r CDgT(C)' CDgR(C)/ and upto
higher orders are continuous on [0, T]. We use MEM to expand S(¢), E(¢), I(¢), Iw (¢), T(¢) and
R(() for ¢ = (o = 0. The expression for ¢; is

561 = $160) + B (160 B(Go). 160 T (Go) TG RUGo) s + € DRIS(Q)
() = BGo) + Ba (G, B 1 (G} o Go): TG0 RGo) g5+ D) e
1(68) = 1(60) + Ba(S(60): BGo) 160 (6o TG RIG) s + DR gt

1 (6) = iy (G0) + BulS(60): B(G0): (60, T (60): TG0 RUGo) s + D8 (€) p
T(60) = T(60) + Bo(S(60) B(G): 6. I (G, T(Go) RIGu)) s + DTG
R(G) = RUG) + Ba(S(60. E(G): 160): (60 TG0, RGo) g + DRI gt
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Given the diminutive step size h in this method, we disregard the second-order expressions that
include h?7. Subsequently, we possess

() = S(6) + Ba(S(G). BG).T(G). T (00)- T(G). RGN gy
BG) = B(G) + Ba(S(). (&) (). T (6). 7). RO gy
I(G) = 1(Go) + BalS(G). PG} 1) o (6. T(Go) RGO oy
T (G) = T (G0 + Ba(S(G0). E(G). T(00): o (60). T'Go). RLG)) 7y
7(G) = T(G) + Ba(S(6). BG) 1) T (6). T(Go) RO Fro s
RG) = RG) + BalS(00). B 1) T (00): T(6). RG)) 5577
Furthermore, the subsequent terms are
(@) = S(6) + By (S(0) B(C): TG). w (G0). T(0). RIG) ey
B(G) = B(G) + Ba(S(6). (G T(G). I (0). () RGO -
I(G) = 1)+ BalS(G). BG). I T (6). T(G) R oy
(G2 = Tor () + Ba(S(G). BG) I (6). T(G) RO oy
T(G) = T(G) + B(S(0)- B(G)-T(6): o (). TG R 5 -
R(G) = RIG) +Bo(S(C0). B(G). 1) I (@) 7). RO g5
Similarly, the iteration at ¢, 41 = C; + h (where j = 0,1,...,m) is as follows,
$(Ge1) = S(G) + Bi(S(G). BG)6). Iw(G).T(0). G 55
BlGyo1) = BG) + Ba(S(6). E(G)1(G) Fw(G). (). RIG) ey
I(Gar) = 1(G) + BalS(G). PG I(G) T (6). TG R o
() = IwG) + Ba(S(6). B(G). TG Twl6). TG R ey
T(Gar) = T(G) + B5(S(G). (G TG Twl6): TG ) RGO ey
RiGy11) = RIG) + Bo(S(6): B(G). T(G). wlG)- T(6). RG) 777
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After further simplification, we obtain the general approximate solution of proposed model as,

() = S0 + Frgs (=17 = (= 1= Di"Bs (G0 S(@) + T (=i

L9 = 1) — i — B (G S(C)) + F(;Lf'm)&@j, S(¢-1))
hn
+ NOE 1)31(@—175((3'—1)),
(&) = B0) + (= 1) = (j = 1 — 1)) BalCo, B(Go)) + o 3(( — i+ 1)
I'(n+2) L(n+2) =
=20 = )" 4+ (j—i— 1) B (G, B(G)) + %Bz(é}ﬂ(@fl))
hn
+ WBz(Cj—hE(Cj—l)),
T(G) = T(0) + — (G = 17— (j — 5 — D))Bs(Co T(C0)) + o S — i+ 1)1
I'(n+2) L(n+2) =
=20 =17 (= DTG ) + g Bl T (2-)
hn
+ WBS(CJA»I(CJA)%
R () = I 0) + g (G = 1070 = G =1 = D" Ba(Gon T (60) + gy (G =1+ 1™

=20 = )" (=i = 1) Ba(G Iw (G) + F(nhilm)&l@j’ Iw (¢j-1))

+ F(vjl:_l)34(§j—lvlw(<j—l))v
T(¢;) =T(0) + F(nhj- 2) (= 1) = (G —n—1)7"B5(Co, T(Co)) + 1“(77}13-2) i:l((j —i+ 1)t

=20 =1 4+ (= 1= DB TG + B TG )

+ F(,';l:_l)B5(<j—17T(Cj—1>)7

R ) . ) . h" j—1 . n

R(¢) = R(0) + m((] — 1) — (j = —1)")Bs(Co, R(0)) + T2 }:1((3 i+ 1)t

=20 = 1) 4 (- i — )"THBe (¢, R(G)) + F(nh_nmlg(s((m R(¢j-1))

hn
+ WBG(CJA»R(CJA))»

The simulation parameters are taken from [38] shown in Table 1. Initial conditions of all com-

partments are as follows, S(0) = 23127003, E(0) = 630380, I(0) = 60706, Iw (0) = 261929,
T(0) = 47742, R(0) = 672240.
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Table 1: Description of parameters for the Model (2).

Parameter | Description Value
A Recruitment rate by migrants and birth 385600
] Natural mortality rate 0.01382
v Rate of recovered individuals regain susceptibility 0.05
15} Rate of transmission 1.937 x 1078
0 Reduction coefficient of I enter into T’ 0.0471
w Rate of exposed population becomes infected 0.0518
o Transmission ratio from I to T" 0.6541
10) Transmission ratio from Iy to T 0.0222
dy Disease-induced mortality rate of compartment / 0.1128
do Disease-induced mortality rate of compartment 7' 0.0291
T Rate of recovery form compartment 7' 0.6062
ro Rate of recovery form compartment Iy 0.8678
a Impact rate influenced by media 0.0164
m Half saturation constant 36704

We simulate all compartments for numerous fractional orders and an integer order n = 1.
In Figures 4(a)- 4(f), we present the numerical simulations for each compartment of the model
corresponding to different values of the fractional derivative order, n = 0.75,0.85,0.95, 1, plotted
against time ( (in days). The convergence rate of each compartment is notably influenced by the
fractional order 7. Although the quantitative results vary across different values of 7, the overall
qualitative behavior remains consistent across all cases. Figure 4(a) illustrates a gradual increase
in the susceptible population over time, eventually stabilizing after approximately 200 days. Fig-
ure 4(b) shows a decreasing trend in the exposed population, with the rate of decline depending
on the fractional order. Similarly, Figure 4(c) demonstrates a reduction in the infected population
over time. Figures 4(d) and 4(e) further reveal a steady decline in both infected workers and those
under treatment, suggesting a gradual reduction in disease burden and improvement in overall
community health.

Both graphs show convergence and stability. The proportion of cured individuals increases
and after a few days decreases with the adoption of appropriate treatment, as shown in Figure
4(f). All graphs show convergence and stability of the proposed model. The population grows
or declines more rapidly at lower fractional orders, but this pattern reverses as the fractional or-
der increases in a specific class. From the graphical observation, the health improvement can be
expected in this population over time. Moreover, the graphical results show that the two key pa-
rameters, « and m, have a distinct influence on the rate of the infected workers population. To
attain the objective of total TB eradication, the parameter « can affect the rate of TB cases. But m
can only slightly decline the rate of TB cases. The incidence and eventual elimination of TB can
be regulated by the transmission rate, treatment, and recovery. One important way to improve
TB control among seasonal farm workers and migrants is to encourage them to seek preventive
treatment.
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Figure 4: Graphical result of the epidemic Model (2) for various fractional orders n = 1, 0.95, 0.85, 0.75 via MEM method.

Further, we used the RK4 method to compare and check the validity of the Model (2) solutions.
This is due to the MEM possessing second-order accuracy, while the RK4 method exhibits fourth-
order accuracy [8]. Consequently, Figure 5 provides a more precise outcome. In summary, the
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integration of o and m parameters into the model has effectively reduced the transmission of TB.
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Figure 5: Graphical result of the epidemic Model (2) for various fractional orders n = 1, 0.95, 0.85, 0.75 via RK4 method.
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8 Conclusions

Epidemiological models are essential for formulating strategies to comprehend, prevent, and
manage infectious diseases via vaccination, social distancing, quarantine, and public awareness.
The study provides an epidemiological model of TB transmission dynamics incorporating the
effects of fractional-order derivatives and awareness. First, we proved the existence and unique-
ness of the solution and examined the HU stability of the suggested model using fixed-point the-
ory. Moreover, the sensitivity analysis was conducted to assess the relative impact of the media-
influenced associated parameters. Since parameter « is so sensitive, TB may be completely erad-
icated by increasing the number of TB-infected migrants and seasonal farm workers seeking pre-
ventative treatment. Numerical simulations were performed using the MEM, and the results were
visually interpreted for arbitrarily chosen parameters by MATLAB 2024 software. The accuracy
and validity of these results were confirmed via comparison with the RK4 method. Graphical
representations highlighted a significant reliance on parameter values, with varying outcomes
observed for different values of 7.

Notably, the value of Ry = 0.5473 < 1, which indicates that the disease will become extinct
entirely. This study’s findings can contribute specific efforts to improve knowledge of TB through
mass media and develop a positive attitude among seasonal farm workers and migrants towards
the disease treatment. Furthermore, our findings encourage policy makers to develop and exe-
cute effective public health interventions for seasonal farm workers and migrants. Consequently,
it is important to implement measures for seasonal farm workers and migrants to manage and
eradicate TB. This comprehensive understanding offers a distinctive viewpoint on TB dynamics,
enabling public health authorities and policymakers to develop more effective disease manage-
ment and prevention techniques. In future work, we will utilize fractal-fractional derivative and
optimal control theory in this research to examine the pandemics in TB infected regions.
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